pub struct LinkedList<T> { /* fields omitted */ }
A doubly-linked list with owned nodes.
The LinkedList
allows pushing and popping elements at either end
in constant time.
Almost always it is better to use Vec
or VecDeque
instead of
LinkedList
. In general, array-based containers are faster,
more memory efficient and make better use of CPU cache.
Creates an empty LinkedList
.
use std::collections::LinkedList;
let list: LinkedList<u32> = LinkedList::new();
Moves all elements from other
to the end of the list.
This reuses all the nodes from other
and moves them into self
. After
this operation, other
becomes empty.
This operation should compute in O(1) time and O(1) memory.
use std::collections::LinkedList;
let mut list1 = LinkedList::new();
list1.push_back('a');
let mut list2 = LinkedList::new();
list2.push_back('b');
list2.push_back('c');
list1.append(&mut list2);
let mut iter = list1.iter();
assert_eq!(iter.next(), Some(&'a'));
assert_eq!(iter.next(), Some(&'b'));
assert_eq!(iter.next(), Some(&'c'));
assert!(iter.next().is_none());
assert!(list2.is_empty());
Provides a forward iterator.
use std::collections::LinkedList;
let mut list: LinkedList<u32> = LinkedList::new();
list.push_back(0);
list.push_back(1);
list.push_back(2);
let mut iter = list.iter();
assert_eq!(iter.next(), Some(&0));
assert_eq!(iter.next(), Some(&1));
assert_eq!(iter.next(), Some(&2));
assert_eq!(iter.next(), None);
Provides a forward iterator with mutable references.
use std::collections::LinkedList;
let mut list: LinkedList<u32> = LinkedList::new();
list.push_back(0);
list.push_back(1);
list.push_back(2);
for element in list.iter_mut() {
*element += 10;
}
let mut iter = list.iter();
assert_eq!(iter.next(), Some(&10));
assert_eq!(iter.next(), Some(&11));
assert_eq!(iter.next(), Some(&12));
assert_eq!(iter.next(), None);
Returns true
if the LinkedList
is empty.
This operation should compute in O(1) time.
use std::collections::LinkedList;
let mut dl = LinkedList::new();
assert!(dl.is_empty());
dl.push_front("foo");
assert!(!dl.is_empty());
Returns the length of the LinkedList
.
This operation should compute in O(1) time.
use std::collections::LinkedList;
let mut dl = LinkedList::new();
dl.push_front(2);
assert_eq!(dl.len(), 1);
dl.push_front(1);
assert_eq!(dl.len(), 2);
dl.push_back(3);
assert_eq!(dl.len(), 3);
Removes all elements from the LinkedList
.
This operation should compute in O(n) time.
use std::collections::LinkedList;
let mut dl = LinkedList::new();
dl.push_front(2);
dl.push_front(1);
assert_eq!(dl.len(), 2);
assert_eq!(dl.front(), Some(&1));
dl.clear();
assert_eq!(dl.len(), 0);
assert_eq!(dl.front(), None);
Returns true
if the LinkedList
contains an element equal to the
given value.
use std::collections::LinkedList;
let mut list: LinkedList<u32> = LinkedList::new();
list.push_back(0);
list.push_back(1);
list.push_back(2);
assert_eq!(list.contains(&0), true);
assert_eq!(list.contains(&10), false);
Provides a reference to the front element, or None
if the list is
empty.
use std::collections::LinkedList;
let mut dl = LinkedList::new();
assert_eq!(dl.front(), None);
dl.push_front(1);
assert_eq!(dl.front(), Some(&1));
Provides a mutable reference to the front element, or None
if the list
is empty.
use std::collections::LinkedList;
let mut dl = LinkedList::new();
assert_eq!(dl.front(), None);
dl.push_front(1);
assert_eq!(dl.front(), Some(&1));
match dl.front_mut() {
None => {},
Some(x) => *x = 5,
}
assert_eq!(dl.front(), Some(&5));
Provides a reference to the back element, or None
if the list is
empty.
use std::collections::LinkedList;
let mut dl = LinkedList::new();
assert_eq!(dl.back(), None);
dl.push_back(1);
assert_eq!(dl.back(), Some(&1));
Provides a mutable reference to the back element, or None
if the list
is empty.
use std::collections::LinkedList;
let mut dl = LinkedList::new();
assert_eq!(dl.back(), None);
dl.push_back(1);
assert_eq!(dl.back(), Some(&1));
match dl.back_mut() {
None => {},
Some(x) => *x = 5,
}
assert_eq!(dl.back(), Some(&5));
Adds an element first in the list.
This operation should compute in O(1) time.
use std::collections::LinkedList;
let mut dl = LinkedList::new();
dl.push_front(2);
assert_eq!(dl.front().unwrap(), &2);
dl.push_front(1);
assert_eq!(dl.front().unwrap(), &1);
Removes the first element and returns it, or None
if the list is
empty.
This operation should compute in O(1) time.
use std::collections::LinkedList;
let mut d = LinkedList::new();
assert_eq!(d.pop_front(), None);
d.push_front(1);
d.push_front(3);
assert_eq!(d.pop_front(), Some(3));
assert_eq!(d.pop_front(), Some(1));
assert_eq!(d.pop_front(), None);
Appends an element to the back of a list
use std::collections::LinkedList;
let mut d = LinkedList::new();
d.push_back(1);
d.push_back(3);
assert_eq!(3, *d.back().unwrap());
Removes the last element from a list and returns it, or None
if
it is empty.
use std::collections::LinkedList;
let mut d = LinkedList::new();
assert_eq!(d.pop_back(), None);
d.push_back(1);
d.push_back(3);
assert_eq!(d.pop_back(), Some(3));
Splits the list into two at the given index. Returns everything after the given index,
including the index.
This operation should compute in O(n) time.
Panics if at > len
.
use std::collections::LinkedList;
let mut d = LinkedList::new();
d.push_front(1);
d.push_front(2);
d.push_front(3);
let mut splitted = d.split_off(2);
assert_eq!(splitted.pop_front(), Some(1));
assert_eq!(splitted.pop_front(), None);
🔬 This is a nightly-only experimental API. (drain_filter
)
recently added
Creates an iterator which uses a closure to determine if an element should be removed.
If the closure returns true, then the element is removed and yielded.
If the closure returns false, the element will remain in the list and will not be yielded
by the iterator.
Note that drain_filter
lets you mutate every element in the filter closure, regardless of
whether you choose to keep or remove it.
Splitting a list into evens and odds, reusing the original list:
#![feature(drain_filter)]
use std::collections::LinkedList;
let mut numbers: LinkedList<u32> = LinkedList::new();
numbers.extend(&[1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]);
let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<LinkedList<_>>();
let odds = numbers;
assert_eq!(evens.into_iter().collect::<Vec<_>>(), vec![2, 4, 6, 8, 14]);
assert_eq!(odds.into_iter().collect::<Vec<_>>(), vec![1, 3, 5, 9, 11, 13, 15]);
Extends a collection with the contents of an iterator. Read more
Extends a collection with the contents of an iterator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an Ordering
between self
and other
. Read more
fn max(self, other: Self) -> Self | 1.21.0 [src] |
Compares and returns the maximum of two values. Read more
fn min(self, other: Self) -> Self | 1.21.0 [src] |
Compares and returns the minimum of two values. Read more
Performs copy-assignment from source
. Read more
Feeds this value into the given [Hasher
]. Read more
Feeds a slice of this type into the given [Hasher
]. Read more
Formats the value using the given formatter. Read more
Executes the destructor for this type. Read more
Creates an empty LinkedList<T>
.
type Item = &'a T
The type of the elements being iterated over.
type IntoIter = Iter<'a, T>
Which kind of iterator are we turning this into?
type Item = &'a mut T
The type of the elements being iterated over.
type IntoIter = IterMut<'a, T>
Which kind of iterator are we turning this into?
type Item = T
The type of the elements being iterated over.
type IntoIter = IntoIter<T>
Which kind of iterator are we turning this into?
Consumes the list into an iterator yielding elements by value.
This method tests for self
and other
values to be equal, and is used by ==
. Read more
This method tests for !=
.
type Owned = T
Creates owned data from borrowed data, usually by cloning. Read more
🔬 This is a nightly-only experimental API. (toowned_clone_into
)
recently added
Uses borrowed data to replace owned data, usually by cloning. Read more
type Item = <I as Iterator>::Item
The type of the elements being iterated over.
type IntoIter = I
Which kind of iterator are we turning this into?
type Error = !
🔬 This is a nightly-only experimental API. (try_from
)
The type returned in the event of a conversion error.
🔬 This is a nightly-only experimental API. (try_from
)
Immutably borrows from an owned value. Read more
type Error = <U as TryFrom<T>>::Error
🔬 This is a nightly-only experimental API. (try_from
)
The type returned in the event of a conversion error.
🔬 This is a nightly-only experimental API. (try_from
)
Mutably borrows from an owned value. Read more
🔬 This is a nightly-only experimental API. (get_type_id
)
this method will likely be replaced by an associated static